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Formation Flying

• Formation: S/C coupled by automatic 
feedback control with direct or indirect
coupling between all S/C

• Tightest requirements for synthetic apertures
– Driver is stroke limitations of optics 

• GEO Sparse Aperture: DARPA LASSO
– Millimeter-level error box
– Arcsec-level attitude control

• Deep Space Nulling Interferometer: TPF-I
– Sub-cm to several centimeter error box
– Arcsec to sub-arcmin attitude control

• Deep Space Fizeau Synthetic Aperture:
Stellar Imager

– Sub-cm-level error box
– Up to 32 S/C = LARGE formation
– Arcsec to sub-arcmin attitude control



Applications

• Aperture Synthesis
– Exoplanet detectionp

and characterization
– Astrophysics
– Surveillance Sparse Aperture Synthesis 

for GEO Optical Surveillance

InSAR Formation

– Communications
– Synthetic Aperture Radar (SAR)

• Interferometric SAR (InSAR)

for GEO Optical Surveillance

• Automated Rendezvous and 
Proximity/Docking Operations
– Lunar/Martian Sample Return Matching Tumbling 

T ’ A l– On-orbit Manufacturing
– On-orbit Assembly
– On-orbit Servicing

Target’s Angular 
Velocity for Docking

– Reconnaissance of
Space Assets

Automated Rendezvous for 
Sample Return Circumnavigation

for Inspection



Manufacturing and Assembly
of a Sparse Aperture

QuickTime™ and a
Cinepak decompressor

are needed to see this picture.



U.S. Distributed Missions
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Non-U.S. Distributed Missions
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Technology Challenges
• Formation guidance and control

– Synchronous reconfiguration and reorientation 
– Scalable decentralized/distributed guidance, control, and estimation
– Relative position and attitude control for precision interferometry 

• High-precision and large-FOV sensors
• Extremely high-precision, low noise thrusters and wheels
• Scalable inter-spacecraft communication
• High-speed distributed computing, data management and 

autonomy
– Collaborative behavior
– Autonomous fault detection and recovery
– Coordinated instrument and science planning/processing 
– Efficient numerical integrators which handle large scale variations in 

states (relative position and attitude) 
• High-fidelity modeling and distributed real-time simulation

E t ll i l di l d– Eventually including payloads 
• HW Testbeds

– 6DOF for development and ground validation



Summary of Formation Test Facilities at JPL 
High-fidelity, flight-like, ground-based capability to simulate              
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Collaborative System Demonstrations 



Summary

• Many new and challenging distributed spacecraft missions and 
conceptsconcepts
– New capabilities, new discoveries, new science

• Intelligent space vehicles needed with increased autonomy
– Operate distributed spacecraft as a single entity with a single 

operations team

• Distributed, collaborative systems in space will needDistributed, collaborative systems in space will need
– New hardware, GNC methodologies, system development 

approaches, and system architectures

f• New testbed concepts, testing environments, and flight 
demonstrations key to success

• Significant increase in non-US distributed spacecraft technology S g US p gy
investment and planned flights
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